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Abstract. In 2005, Ginger Myles and Hongxia Jin proposed a software
watermarking scheme based on converting jump instructions or uncondi-
tional branch statements (UBSs) by calls to a fingerprint branch function
(FBF) that computes the correct target address of the UBS as a function
of the generated fingerprint and integrity check. If the program is tam-
pered with, the fingerprint and integrity checks change and the target
address will not be computed correctly. In this paper, we present an at-
tack based on tracking stack pointer modifications to break the scheme
and provide implementation details. The key element of the attack is
to remove the fingerprint and integrity check generating code from the
program after disassociating the target address from the fingerprint and
integrity value. Using the debugging tools that give vast control to the
attacker to track stack pointer operations, we perform both subtractive
and watermark replacement attacks. The major steps in the attack are
automated resulting in a fast and low-cost attack.

Keywords: software, watermark, unconditional branch, breakpoint.

1 Introduction

In recent years, watermarking and fingerprinting have gathered significant atten-
tion due to the growing concerns over digital piracy and forgery of multimedia
documents including software. Fingerprinting and Software Authentication are
two major security aspects that have emerged. While the former is related to
preventing illegal distribution, the latter tries to ensure that the software has
not been tampered with. Numerous models have been proposed with these ob-
jectives, embedding watermarks, fingerprints, and integrity checks in the source
codes and/or executable codes. Software watermarking schemes can be classified
as follows:

– Graph-based/branch-based software watermarking: The software is treated as
a graph Gs with sequential blocks of code as nodes and transfer instructions
such as function calls and branch statements as edges connecting the nodes.
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The watermark is a separate code and realized as a graph Gw. The two
graphs Gs and Gw are connected by inserting additional edges (implemented
as branch statements). The resulting watermarked graph is Gs′ = Gs + Gw

and source code s′ is decoded from Gs′ .
Venkatesan et al. [14] proposed the first graph-based software watermark-

ing scheme. The central idea is to convert the software and the watermark
code into digraphs and add new edges between the two graphs implemented
by adding function calls between the software and watermark code. This
scheme lacks error-correcting capabilities and is susceptible to re-ordering
of instructions and addition of new function calls. Another problem in the
scheme is that the random walk mentioned in the paper (refers to the next
node to be added in the watermarked software graph being selected ran-
domly from the software graph and the watermark graph) is not actually
random. The node visited next is based on the number of remaining nodes
belonging to software graph Ns and the number of remaining nodes belong-
ing to watermark graph Nw. The next node is chosen from the watermark
nodes with a probability of Nw

Nw+Ns
and from the software nodes with a prob-

ability of Ns

Nw+Ns
. In a typical scenario, Ns � Nw, hence the watermark is

skewed towards the tail of the watermarked program. This information is
useful for probabilistic attacks. Alternatively, a pseudo-random permutation
of the nodes to be visited can be generated. For further literature in graph-
based software watermarking, the reader is referred to [1,2,3,4,13]. None of
these schemes are completely secure against instruction and block re-ordering
attacks.

– Register-based software watermarking: Registers used to store variables are
changed depending on the watermark bit to be embedded by replacing higher
level language code with an inline assembly code. The attacker intends to re-
allocate variables in registers if the watermark has to be removed. Though,
no such attack has yet been proposed.

Register-based software watermarking based on the QP algorithm (named
after authors Qu and Potkonjak) [10,11] is presented in [7]. It modifies regis-
ters used to store variables depending on which variables are required at the
same time. The scheme is susceptible to register re-allocation attacks. A sec-
ondary watermark destroys the old watermark and inserting bogus methods
renders the original watermark useless by changing the interference graph.

– Thread-based software watermarking: Nagra et al. [9] propose encoding the
watermark in the sequence of the threads that are executed. For example,
there are 3 threads; T1, T2, T3, T1 → T2 → T3 encodes watermark (000)2
and T1 → T3 → T2 encodes watermark (001)2 and so on. However, without
any additional error-control mechanism, changing threads that execute piece
of a code would destroy the watermark. Again, there has been no scheme
claiming to break the watermark using suggested approach.

– Obfuscation-based software watermarking: This class of watermarking is ap-
plicable to object-oriented softwares. Class C with functions {f1, f2, . . . , fn}
is partitioned into k subclasses {C1, C2, . . . , Ck} and the watermark is



284 G. Gupta and J. Pieprzyk

encoded in the allocation of the functionalities Examples of such proposed
schemes are [5,6,12].

This paper is organized as follows. Section 2 addresses related work in branch-
based software watermarking and Section 3 describes watermarking scheme of
Myles and Jin that we propose to attack. This is followed by a description of
our attack in Section 4. Section 5 provides implementation details and results.
We conclude our paper with a note on future enhancements in Section 6.

2 Related Work

There have been several research projects dealing with branch-based software
watermarking. These schemes exploit possibilities to modify the program’s ex-
ecution path by altering branch statements. In this section, we discuss two pa-
pers closely related to our attack. The first by Collberg et al. [1] that introduces
Branch Functions. The second paper is by Myles and Jin [8] and describes the
watermarking scheme that we attack in this paper.

Collberg et al. introduce the notion of Branch Function [1]. Jump instruc-
tions or unconditional branch statements (UBSs) are replaced by calls to the
branch function (for the sake of consistency, by branch, we mean an uncondi-
tional branch statement from now on) and modifies its own return address in
order to return the control to the target of the branch statement. Figure 1 il-
lustrates this process. If the program contains a jump instruction from lbegin to
lend, several intermediate pit stops are inserted so that the control-flow graph
becomes lbegin → a1 → a2 → . . . → lend such that lbegin has a jump instruction
to a1 which has a jump instruction to a2 and so on. The pit stops are inserted
using the rule:

address(ai) < address(ai+1), if watermark bit wi = 1
address(ai) > address(ai+1), if watermark bit wi = 0

Finally all the jump instructions are replaced by call to the branch function
that determines the correct target address based on the calling address and
returns the control to it.

Obvious attacks on such a scheme are adding an additional pit stop to the
chain lbegin → a1 → a2 → . . . → lend such that it becomes lbegin → a1 →
aextra → a2 → . . . → lend or deleting an existing pit stop such that it becomes
lbegin → a2 → . . . → lend . The goal is to disturb the chain (thereby modify the
watermark) yet keep the origin and target the same (hence keeping the execution
path intact). Making similar changes, inserting secondary watermark is a trivial.

Myles and Jin propose an alternative fingerprinting model in [8]. The un-
derlying concept remains the same, that is, a branch function transferring con-
trol to the target of the UBS, but in this case, the branch function contains
the fingerprint-generating code, hence the name Fingerprint Branch Function
(FBF). FBF also computes an integrity check on the source code to ensure that
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Fig. 1. Insertion of branch function F that changes the return address according to
the calling address and transfers control to target of the UBS. The jump instructions
are now replaced by calls to F .

it is not modified. In the following section, we discuss this scheme in detail and
analyze its flaws and weaknesses.

3 Discussion on Watermarking Scheme

The watermarking scheme is applied to software containing branch statements.
These statements are then replaced by calls to FBF which returns control to
the target address. The target address is generated from a recursive process of
deriving new keys from old keys and checking the program for integrity. Addi-
tionally, an integrity check branch function (ICBF) is inserted in the program
that verifies the integrity of FBF. If the user manipulates the program, the keys
derived and integrity check value would change and hence the target address will
change. The modified target address can be valid (belonging to code section of
the program) which will result in incorrect execution of the program. Alterna-
tively the target address can be invalid (lying outside the code section) resulting
in runtime error. We will now discuss the two algorithms in the scheme, “em-
bed” that inserts the watermark in the software and “recognize” that extracts
the watermark from the watermarked software. They are defined as:

1. embed(P, AM, keyAM , keyFM) → P ′, FM
2. recognize(P ′, keyAM , keyFM) → AM, FM

where

– P is the original software,
– AM is the authorship mark,
– keyAM is the secret input sequence to generate a trace of the program used

to embed the watermark - the same for all copies of watermarked software,
– keyFM is an initial secret key for deriving further keys - different for each

copy of the watermarked program,
– FM is the fingerprint mark
– P ′ is the watermarked software

3.1 Watermark Embedding

The steps involved in the embed algorithm are:

1. Let α be the set of all functions in P . Run the program with a secret input
sequence keyAM .
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2. Obtain set F of functions that lie in the execution path when the program
is run with input sequence keyAM , let β = α − F .

3. The number of UBSs in functions that belong to F is n and the number of
UBSs in functions from β is m.

4. Insert the two integer arrays; T of size n and R of size m in the data section
of the program.

PROGRAM P

When executed with
secret input sequence Key

.

.

.

3

2

1

main

AM

Set F of functions executed

f

f

f

Fig. 2. The set of functions F is executed when the program P is run with the secret
input keyAM

5. Compute displacement di between source si and target ti of UBSs in func-
tions that belong to F , so for instructions of the form si : jmp ti, the
displacement di = ti − si

6. In the program P , insert FBF ξ that performs the following tasks:
(a) Initializes k0 = keyFM .
(b) For 1 ≤ i ≤ n,

i. Computes integrity check value vi.
ii. Computes key ki from (ki−1, vi, AM) by applying a one-way hash

function SHA1.

ki = SHA1[(ki−1

⊕
AM)‖vi] (1)

(c) Stores di at h(ki)th location in array T (T [h(ki)] = di) where h is a hash
function, h : {k1, k2, . . . , kn} → {1, 2, . . . , m}(n ≤ m).

7. Compute displacements ei between source si and target ti of UBSs in func-
tions that belong to β.

8. Insert ICBF φ in the program that:
(a) Computes integrity check value υi. This value confirms the integrity of

code section of the program containing ξ.
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(b) Stores displacement ei in array R at index computed as a one-way hash
function of υi (R[h(ui)] = ei). The hash function h is the same that was
used in Step 6.(c).

9. Replace all UBSs in F by calls to ξ and UBSs in β by calls to φ.

The fingerprint is generated as the embedding process executes. The final
fingerprint is combination of all derived keys - FM = k1‖k2‖ . . . kn. Users
ui, uj have distinct initializing keys keyFMi , keyFMj , hence final fingerprints
FMi, FMj are different.

3.2 Watermark Recognition

The recognize algorithm is run with the inputs P ′, keyAM , keyFM and outputs
the authorship mark AM and fingerprint mark FM . When the program is run
with the secret input keyAM , the function set F is executed which generates the
fingerprint mark FM = k1‖k2‖ . . . kn by initializing k0 = keyFM and deriving
successive keys using Equation (1). The authorship mark AM can be extracted
by isolating the one-way hash function ki = SHA1[(ki−1

⊕
AM)‖vi].

4 Proposed Attack

Objective of the attacker is to convert the fingerprinted program P ′ to the orig-
inal program P . Since the displacements in T are permuted, determining the
correct target address of UBSs is computationally infeasible. Even if the size
of T is small, the program can have error-guards that intentionally corrupt the
program after a specific number of run-time errors, making hit-and-trial attack
impossible. The function φ checks the integrity of ξ, adding to the security of
the scheme and thereby making the attack more difficult.

In ξ, the integrity check is done and a key is generated. The key is then
mapped to the index in the displacement array where the correct displacement
is stored. Security of the scheme depends on the correct execution path being
a function of keys and integrity checks. If the key generated or the integrity
value is incorrect, the displacement is wrong, and therefore the execution path
is wrong. We concentrate our attack on this dependence. As soon as we can
disassociate the correct execution path from the keys and integrity check, the
code generating keys and integrity check can be deleted. The authors of [8] claim
that the attacker needs to analyze the data section of the program to notice any
changes and read the displacement array. This claim is fallacious as an attacker
can track register values, including the stack pointer (SP) at:

1. Entry point of ξ: SP = spi1

2. Exit/ Return instruction of ξ: SP = spi2

The difference spi2 −spi1 gives the displacement value di. Identification of the
instructions participating in fingerprint generation is also achievable. According
to [8], “In the second phase of the algorithm, the branches in each function f
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that belongs to F are replaced by calls to the FBF”. We can create a mapping
of functions being called by other functions and thereby create sets of functions
which all point to one particular function. ξ can be identified by the stack-pointer
modifying statements and the set F can be identified as the set of functions
calling ξ. Therefore, keyAM is no longer required to identify the set of functions
participating in watermarking. Within the set F , each instruction calling ξ and
having memory address sp1 can now be replaced by an unconditional branch to
the instruction at sp2. This can be achieved using inline assembly programming.
For example, in C++, a user can make use of asm blocks. As a result, the
displacement and hence the correct target address is no longer a function of the
key and integrity check.

An example of such a block modifying the stack pointer is given below,

asm {
1: pop ECX;
2: add ECX,dis;
3: push ECX;
}

In the above code, statement 1 extracts the current value of Stack Pointer into
register ECX. Statement 2 adds the intended displacement dis to the popped
value and statement 3 pushes back the modified value onto the Stack. The Stack
Pointer now contains a modified return address. If dis is positive, the new ad-
dress at is greater than the original return address ar (at > ar) and the control
is transferred “forward”. If it is negative (at < ar), control is transferred “back-
ward”. Observe that φ calls can similarly be replaced by the original UBSs.

After changing calls to ξ and φ by UBSs, the two functions (ξ, φ) can be
deleted. When the recognize algorithm is run with input keyAM , keyFM , the
inputs are unused dead variables, the algorithm doesn’t output the fingerprint
mark FM and the recognition algorithm fails. The resulting software is equiva-
lent to an un-watermarked software.

Summarizing our described process, the steps performed by the attacker are:

1. Identify ξ: This task is accomplished by locating stack-pointer modifying
statements. For example, in C/C++, searching for asm blocks. If a program
contains multiple asm blocks, the ones with modification operation on ESP
(Stack Pointer) requires to be targeted.

2. Identify F : After identifying ξ, the fact that only the functions that belong
to F call ξ can be utilized to identify F .

3. Displacement computation: Stack pointer values are recorded at the entry
and exit points of ξ (spi1 and spi2 respectively) and displacement di is equal
to spi2 − spi1 . Target instructions are determined from calling instruction
and displacement. In our implementation, we use breakpoints to track the
register values.
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4. Replacement of ξ calls to UBSs : If the purpose of the attack is to remove
the watermark, the function calls to ξ are replaced by UBSs to obtain the
original watermarked code.

5. Creating a modified watermarked program: The attacker can embed his/her
own authorship mark AM ′ after removing the original authorship mark AM .
For a successful attack, (AM ′, FM ′) should be recognized on running recog-
nize algorithm with parameters P ′, keyFM , keyAM where FM ′ �= FM .
(a) For all f that belong to F , compute the displacement between the calling

address and the target address and store in an array along with the
calling address.

(b) Replace the UBSs by call to a new Fingerprint Branch Function, ξ̃.
(c) ξ̃ need not compute integrity check but simple calculates a new key

based on the old key and attacker’s authorship mark AM’.

ki = SHA1[ki−1

⊕
AM ′]. (2)

Comparing (1) and (2), k′
i �= ki, 1 ≤ i ≤ n.

(d) Map the keys to correct displacement using hash,

h : {k′
1, k

′
2, . . . , k

′
n} → {1, 2, . . . , m}(n ≤ m)

T [h(k′
i)] = di

The key sequence FM ′ generated is different from the original key sequence
FM as the individual keys are different. More formally,

k′
1 �= k1, k

′
2 �= k2, . . . , k

′
n �= kn

⇒ {k′
1, k

′
2, . . . , k

′
n} �= {k1, k2, . . . , kn}

⇒ {k′
1, k

′
2, . . . , k

′
n} �= FM

⇒ FM ′ �= FM

The recognition algorithm now outputs FM ′, AM ′ when executed with the
inputs P ′, keyAM , keyFM .

In terms of efficiency, the overall complexity of attack depends on complexities
of steps 3 and 4 as others are one-off steps. Steps 3 and 4 have linear complexity
and hence the attack has O(n) complexity. Steps 1 and 2 are automated and no
human inspection is required to identify ξ and F .

5 Implementation Details and Results

We have implemented the watermarking scheme in Visual C++ and carried
out the attack using the same. The features useful in doing so are the debug
lookup windows - disassembly and register. The stack pointer value can then
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be tracked by using breakpoints under debugging mode and there is minimal
manual intervention or inspection required. The following is disassembled code
of the watermarked program used to compute displacement values.

Function fi that belongs to F calling FBF ξ in statement 94:

0041198C rep stos dword ptr es:[edi]
0041198E mov eax,dword ptr [a]
00411991 cmp eax,dword ptr [b]
00411994 jle greater+2Bh (41199Bh)
00411996 call fingerprint (411271h)
0041199B push offset string " is greater \n" (4177A8h)
004119A0 mov esi,esp
004119A2 mov eax,dword ptr [b]
004119A5 push eax
004119A6 mov ecx,dword ptr [__imp_std::cout (41A350h)]
004119AC call dword ptr

[__imp_std::basic_ostream<char,
std::char_traits<char>>::operator<< (41A354h)]

004119B2 cmp esi,esp
004119B4 call @ILT+425(__RTC_CheckEsp) (4111AEh)
004119B9 push eax
004119BA call std::operator<<<std::char_traits<char> > (411168h)
004119BF add esp,8
004119C2 jmp l1+27h (4119EBh)
004119C4 push offset string " is greater \n" (4177A8h)
004119C9 mov esi,esp
004119CB mov eax,dword ptr [a]
__________________________________________________________________

Fingerprint branch function code modifying return address:

00414AF2 mov eax,ebp
00414AF4 add eax,4
00414AF7 mov ebx,esp
00414AF9 mov esp,eax
00414AFB pop ecx
00414AFC sub eax,eax
00414AFE add eax,0Ah
00414B01 add ecx,dword ptr [dis (419334h)]
00414B07 push ecx
00414B08 mov esp,ebx
__________________________________________________________________

Register values are tracked while the program is executed and the following
results are obtained:
Statement 00414AF2: EIP stores calling address, EIP=00411996.
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Statement 00414AFB: Return address, stored in the stack pointer, is popped
into ECX, ECX = 0041199B.
Statement 00414B01: ECX adds displacement value to calling address, ECX =
004119C4.
Statement 00414B07: ECX value is pushed onto stack pointer. fingerprint();
returns control to this address.

__________________________________________________________________

In a nutshell, instruction 94 calls fingerprint(); which returns control to in-
struction 98 (the target of the original UBS) based on the value of dis looked
up from array T . The attacker can thus compute the difference between ECX
value at statement 80 (ECX80) and ECX value at statement 83 (ECX83) to
find the value of displacement, then replace fingerprint(); call at statement 94 by
UBS transferring control to Ψ(Φ(94) + ECX83 − ECX80) (where Φ(x) denotes
address of instruction x and Ψ(y) represents instruction at address y).

6 Conclusion and Future Work

In this paper, we present a successful low-cost attack on the branch-based wa-
termarking scheme proposed in [8]. The cost of the attack is low in terms of
hardware resources required since the only resources required are a functional
computer with sufficient memory, storage and speed. The attack is efficient as
manual inspection is required only during the step in which displacement values
are noted from the disassembly register window. Even this is a debugger-specific
constraint and in theory, it can be automated, however, we are unaware of an
existing debugger that can perform this task. We provided an implementation
of our scheme and some practical examples. The work lays a strong foundation
for attacking similar software watermarking models [1,2,3,4,13] that depend on
branching and inserting bogus functions in the program in order to embed a wa-
termark. This paper also shows that tracking registers and branches is a trivial
task using debugging tools and hence opens up a very interesting question of how
can the watermarking schemes survive attacks with such advanced capabilities?
Our future work is concerned with the following:

– We have shown that the attack is correct in theory and implemented a
semi-automated version of the attack. We will work towards enhancing the
implementation such that a fingerprinted program written in any language
can be attacked. Practically, this is feasible since the attack operates on the
disassembled code which, irrespective of the programming language in which
it is written, is similar. However, the challenge would be to make the register
tracking process compiler-independent. We also intend to design attacks for
other branch-based watermarking schemes. Since the central security guard
in such schemes is the dependency of the target address on integrity check
and watermark values, they can be attacked in a manner similar to our
attack.
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– Modifying scheme proposed in [8] so that the attack described in this pa-
per is rendered ineffective by creating more complex dependency of inherent
functionality of the program on the keys generated so that the attacker can-
not remove fingerprint code without affecting the correct execution of the
program. This can be done by introducing parameters other than displace-
ment to bind the program’s execution to the keys generated. As a simple
example, a program may modify itself choosing from a set of modifications
based on the key generated.
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